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1. Introduction

The pure spinor formulation of superstrings is a new formalism [1] which powerfully uses

the advantages of the RNS formulation and those of the GS formalism. In particular,

the purpose of its creation was to provide a set-up where the RR fields (appearing in the

spectrum of superstrings) could be treated on the same footing as the NSNS ones. This

equal-footing treatment of the bosonic massless modes of superstrings is realized in every

formulation of supergravity (in components, in superspace or, using rheonomic approach).
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Therefore it would be convenient also for the pure spinor sigma model. This means that

the couplings of the worldsheet fields with the RR backgrounds must be very similar to

the coupling with the NSNS fields. This is indeed achieved in the pure spinor formulation.

Dealing with the complete supergravity multiplet and with its non-linear self-

interactions requires a full-fledged formulation of pure spinor superstrings on arbitrary

(on-shell) background. This has been achieved in the fundamental work [2] where a generic

sigma model, respecting the requirements of super-Poincaré invariance (both on the world-

sheet as well as in the target space) and with the correct quantum numbers has been con-

structed. Consequently, according to the formulation, two BRST currents and their charges

are provided. Thus, imposing the nilpotency of these BRST charges (which is equivalent

to the closure of the constraint algebra) and the holomorphicity of their currents (which is

equivalent to the invariance of the action), the authors derived the supergravity equations

of motion in the form of superspace constraints. The main input in [2] is the requirement

of the constraints on the ghost fields

λ̄1Γ
mλ1 = 0 , λ̄2Γ

mλ2 = 0 .

Here λ̄i = λT
i C with C is the charge conjugation matrix. The index i stands for the right- or

the left-mover pure spinors whose chirality is decided by choosing either IIA or IIB. These

constraints are necessary for the nilpotency of the BRST charge in the flat limit and they

are essential to establish the correct number of degrees of freedom. Therefore, they have

been imposed also for the interacting sigma model on generic backgrounds. Doing that, the

emerging superspace constraints have a complicated and unconventional relation with the

standard description of supergravity. Yet, in [2] it is argued how, using Weyl superspace [3],

one can relate the supergravity constraints from the pure spinor formulation with those

given in [4, 5]. To be more explicit, the connection between a more conventional setting and

the pure spinor formulation is obtained by a Weyl transformation involving the dilatino

followed by a Poincaré transformation needed to reabsorb some additional terms in the

variation of the gravitino fields. Thus, the conclusion is that, insisting on very simple pure

spinor constraints, the ensuing supergravity parametrization in superspace turns out to be

rather obscure. This fails to provide a practical and an effective algorithm to deduce the

pure spinor sigma model starting from a given supergravity background.

Let us invert the path. The old path goes from pure spinor constraints to the sigma

model and yields the supergravity constraints as a by-product. The new path goes from

the geometrical formulation of supergravity to the pure spinor sigma model. Indeed, we

decide to start from a convenient description of supergravity and deduce the constraints

and the conditions under which a pure spinor sigma model can exist.

For these reasons it is highly desirable to have a formulation of the pure spinor sigma

models in which the pure spinor constraints, the BRST operator and the entire set up

follow from background supergravity as it happens for the κ-symmetric actions.

Such a formulation is presented in this paper. Previous work in this direction was

accomplished in [6 – 8], where such ideas were applied to the case of M-theory and of the

M2-brane. Here we focus on type II superstrings and in particular on the type IIA case.
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This is not a random choice but it is motivated by precise reasons. Our ultimate goal is

three-fold, since we want to show that:

1. The pure string BRST invariant σ-model can be constructed on arbitrary supergravity

backgrounds;

2. The structure of the BRST algebra, the form of the pure spinor constraints and the

2-dimensional action can be algorithmically derived from supergravity and its Free

Differential Algebra;

3. The explicit form of the σ-model action obtained in this way is of immediate practical

use for dealing with backgrounds characterized by less than maximal supersymmetry,

like AdS × M supergravity solutions where M is not a sphere.

As we already discussed in [7], issue 3) consists of solving the supergravity problem of

supergauge completion. This means the explicit integration in superspace of the rheonomic

conditions which are first order differential equations in the Grassmann θ-variables. Such

integration is just a brute-force matter (see for example the application to super-Yang-

Mills in 10d [9]), being a priori guaranteed by the fulfillment of Bianchi identities and,

it can be quite cumbersome in general situations. In the directions of those θ-variables

that correspond to supersymmetries preserved by the chosen background, the integration

is automatically performed by the use of Maurer-Cartan superforms of the superisometry

algebra (for instance SU(2, 2|1) in the case of the AdS5 × T(1,1) compactification of type

IIB supergravity [10 – 12] or Osp(6|4) in the case of the AdS4 × P3 compactification of the

type IIA theory [13]). In the other directions, namely those along the θ’s associated with

broken supersymmetries, the integration of the rheonomic conditions might be involved.

Hence, in order to explore the structure of the supergauge completion it is desirable to have

the minimal possible amount of broken thetas. Among the possible compactifications, one

case is the AdS4 × P3 background. There the preserved thetas are 24 and the broken ones

just 8, and they are arranged into an O(2) doublet of D = 4 spinors leading to the hope

that the corresponding sigma model as a nice and insightful description. It is therefore in

such perspective we began to focus on the type IIA case rather than on the type IIB one

which will follow [14].

A second technical reason for this strategy will be clear to the reader. In order to

carry through our programme, the formulation of supergravity which is required is in the

string frame rather than that in the Einstein frame. Although the two formulations are

simply related by a field redefinition, the implementation of such a change of variables in

the rheonomic solution of the Free Differential Algebra Bianchi Identities is so cumbersome

that it turns out to be more convenient to redo the construction of supergravity directly

in the new frame. In view of this we can say that neither the type IIA nor the type IIB

theory were available in the rheonomic framework and in the string frame when we started

the present work. Indeed the rheonomic type IIA theory was never constructed, while

the rheonomic type IIB case was constructed by Castellani and Pesando in the Einstein

frame [15, 16]. The transition to the string frame is even more elaborate in the IIB case

– 3 –
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than in the IIA one, due to the SU(1, 1) covariance of the IIB theory, which is made

manifest only in the Einstein frame.

Having clarified our motivations, let us summarize the structure of the paper:

1. As already recalled above, the algebraic structure underlying any higher dimensional

supergravity theory is a Free Differential Algebra (FDA) [17, 18]. This latter is a cat-

egorical extension of a (super) Lie algebra determined by the Chevalley cohomology

of the latter [19];

2. Given the FDA one considers its Bianchi identities and constructs the unique rheo-

nomic parametrization of the FDA curvatures. Rheonomy is a universal principle

of analiticity in superspace [20] which requires that the fermionic components of the

FDA curvatures should be linear functions of their bosonic ones. Rheonomy encodes

in one single principle the construction of both field equations and supersymmetry

transformation rules for any supergravity. Indeed field equations follow as integra-

bility conditions of the rheonomic parametrization of curvatures. The flow chart for

the construction of classical supergravities was for instance recently presented in [8];

3. Consider then the FDA appropriate to the supergravity under investigation and the

rheonomic parametrization of its curvatures;

4. Perform the ghost-form extension of the classical FDA according to the principle

introduced by Anselmi and Fré in [21], which generalizes ideas previously introduced

by Baulieu [22] namely:

The BRST algebra is provided by replacing, in the rheonomic parametrization of the

classical supergravity curvatures, each differential form with its extended ghost-form

counterpart while keeping the curvature components untouched. Thus one obtains the

rheonomic parametrization of the ghost-extended curvatures, whose formal definition

is identical with that of the classical curvatures with the replacements:

d 7→ d+ S

Ω[n] 7→
∑n

p=0 Ω[n−p,p] (1.1)

where S is the BRST differential and Ω[n−p,p] is a ghost form with form degree n− p

and ghost number p.

In this way one has the ordinary (unconstrained) BRST algebra of supergravity;

5. Set to zero all the bosonic ghosts. This defines a constrained BRST algebra and for

consistency a certain set of pure spinor constraints. The correct constraints are the

projection onto the world-sheet (brane world volume) of these constraints.;

6. Verify that the pure spinor constraints can be solved in terms of as many independent

degrees of freedom as it is required for a conformal theory in d=2 in the case of

superstrings with vanishing central charge;
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superPoincaré algebra

⇓

FDA

⇓

Rheonomic solution of FDA Bianchis

⇓

BRST ghost-extension

⇓

Restriction to fermionic ghosts

⇓

Berkovits algebra and pure spinor constraints

Table 1: Derivation of the Berkovits algebra.

7. Introduce the appropriate antighosts and Lagrange multiplier field and construct the

BRST invariant quantum action.

The whole procedure can be summarized in table 1.

In this way we determine a path from the superPoincaré algebra to the Berkovits

BRST algebra on the fields of non negative ghost-number (see the above flowchart). As

we pointed out in [8] the inclusion of the extra fields with negative ghost number (the

antighosts) requires more explanation since it is not a standard gauge-fixing procedure but

it is obviously essential for the construction of the σ-model action.

We explicitly show how to realize the last steps of the construction in the case of the

type IIA theory and we emphasize that they are just possible because of some very special

features of the rheonomic solution of the FDA Bianchi identities which are displayed by its

string frame formulation and are instead absent in the Einstein frame.

The result of our construction is an explicit expression of the pure spinor BRST invari-

ant action of type IIA superstrings holding true on any supergravity background, irrespec-

tively of the number of supersymmetries it preserves. As a by-product of the construction

we have also the emission vertices for all the supergravity fields, both fermionic and bosonic,

both of the Neveu-Schwarz and of the Ramond Ramond sectors.

Our paper is organized as follows: In section 2, we discuss the formulation of super-

gravity using the Free Differential Algebra in the string frame. We compute the complete

parametrization of the fermionic and bosonic curvatures, including the 3 and 4-fermion

terms. In section 3, we construct the Green-Schwarz sigma model for type IIA superstring

using the FDA and we discuss the background independence. In section 4, we provide the

pure spinor formulation of superstring based on the BRST transformations obtained from

the FDA. In appendices we supplement the main text with some detail of the derivation

and the conventions.

2. Type IIA supergravity and its FDA

Free Differential Algebras (FDA) are a natural categorical extension of the notion of Lie
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algebra and constitute the natural mathematical environment for the description of the

algebraic structure of higher dimensional supergravity theory, hence also of string theory.

The reason is the ubiquitous presence in the spectrum of string/supergravity theory of

antisymmetric gauge fields (p-forms) of rank greater than one.

FDA.s were independently discovered in Mathematics by Sullivan [19] and in Physics

by two of the authors of this paper (R. D’Auria and P. Fré) [17]. The original name given

to this algebraic structure by D’Auria and Fré was that of Cartan Integrable Systems.

Later, recognizing the conceptual identity of this supersymmetric construction with the

pure bosonic constructions considered by Sullivan, we also turned to its naming FDA

which has by now become generally accepted.

Let us also recall that the classification and the explicit construction of FDA.s relies

on two structural theorems by Sullivan showing how all possible such algebras are cohomo-

logical extensions of normal Lie algebras or superalgebras (for a recent and short review of

these concepts just adapted to our purposes see [8]).

The Free Differential algebra of type IIA supergravity in D = 10 can be obtained by

dimensional reduction on a circle S1 from the FDA of the D = 11 supergravity [23, 24].

Although straightforward this construction was never shown in the literature and it is

quite lengthy and laborious. For this reason in appendix B we sketch the main steps of

such a derivation. Furthermore, as we explain extensively in the sequel, our main target is

the rheonomic parametrization of the FDA curvatures in the string frame and not in the

Einstein frame. Hence in the quoted appendix we develop a mixed strategy to obtain our

goal. We begin by constructing the rheonomic parametrization of the bosonic curvatures

in the Einstein frame using dimensional reduction from D=11. In this way we also obtain

the bosonic field equations of type IIA supergravity from dimensional reduction which is

an easier task than deriving them from the Bianchi identities or from the construction of

the D = 10 action. Next we perform a Weyl transformation to the string frame which

changes the bosonic field equations only by an easy rescaling and once we have obtained

the rheonomic parametrizations of the FDA curvatures in the string frame we directly

determine the rheonomic parametrization of the fermionic curvatures in that frame from

the analysis of the Bianchi identities.

All the above mentioned steps are discussed in the appendix. In the main text, we

simply present the final result, namely type IIA supergravity in the string frame.

2.1 Type IIA FDA in the string frame

The field content of type IIA supergravity is given in table 2. This field content corresponds

to the basic forms of a specific Free Differential Algebra including the 0-form items entering

the rheonomic parametrizations of its curvatures.

The starting point is, as usual, the superPoincaré algebra. In D = 10 we have two

superPoincaré algebras with 32 supercharges, the type IIA and the type IIB. The Maurer

Cartan description of the type IIA superalgebra is obtained by setting to zero the following

curvatures:

– 6 –
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Form/degree string sector SO(1, 9)-rep/Chirality superstring zero modes

V a - [1] NS-NS (2, 0, 0, 0, 0) graviton hµν

ψR - [1] R-NS (3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) - right gravitino ψRµ

ψL - [1] NS-R (3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2) - left gravitino ψLµ

B[2] - [2] NS-NS (1, 1, 0, 0, 0) Kalb-Ramond

C[1] - [1] R-R (1, 0, 0, 0, 0) R-R 1-form

C[3] - [3] R-R (1, 1, 1, 0, 0) R-R 3-form

χR NS-R (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 )- right dilatino right

χL R-NS (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2)- left dilatino left

ϕ NS-NS (0, 0, 0, 0, 0) dilaton

Table 2: Field content of type IIA supergravity.

Type IIA superPoicaré algebra in the string frame.

Rab ≡ dωab − ωac ∧ ωcb (2.1)

T a ≡ D V a − i
1

2

(
ψL ∧ Γa ψL + ψR ∧ Γa ψR

)
(2.2)

ρL,R ≡ DψL,R ≡ dψL,R −
1

4
ωab ∧ Γab ψL,R (2.3)

G[2] ≡ dC[1] + exp [−ϕ] ψR ∧ ψL (2.4)

f [1] ≡ dϕ (2.5)

∇χL/R ≡ dχL,R −
1

4
ωab ∧ Γab χL,R (2.6)

where the 0-form dilaton ϕ appearing in eq. (2.4) introduces a mobile coupling constant.

Furthermore, V a, ωab denote the vielbein and the spin connection 1-forms, respectively,

while the two fermionic 1-forms ψL/R are Majorana-Weyl spinors of opposite chirality:

Γ11 ψL/R = ±ψL/R . (2.7)

The flat metric ηab = diag(+,−, . . . ,−) is the mostly minus one and Γ11 is hermitian and

squares to the the identity Γ2
11 = 1.

Setting Rab = T a = G[2] = f [1] = 0 one obtains the Maurer Cartan equations of

a superalgebra where the spinor charges, QL,R dual to the spinor 1-forms ψL,R not only

anticommute to the translations Pa but also to a central charge Z dual to the (Ramond

Ramond) 1-form C[1].

According to Sullivan’s second theorem the FDA extension of the above superalgebra is

dictated by its cohomology. In a first step one finds that there exists a cohomology class of

degree three which motivates the introduction of a new 2-form generator B[2] which in the

superstring interpretation is just the Kalb-Ramond field. Considering then the cohomology

of the FDA-extended algebra one finds a degree four cohomology class which motivates the

introduction of a 3-form generator C[3]. In the superstring interpretation, this is just the

second R-R field, the first being the gauge field C[1]. Altogether the complete type IIA

FDA is obtained by adjoining the following curvatures to those already introduced:

– 7 –
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The FDA extension of the type IIA superalgebra in the string frame.

H[3] = dB[2] + i
(
ψL ∧ Γa ψL − ψR ∧ Γa ψR

)
∧ V a (2.8)

G[4] = dC[3] + B[2] ∧ dC[1]

−
1

2
exp [−ϕ]

(
ψL ∧ Γab ψR + ψR ∧ Γab ψL

)
∧ V a ∧ V b . (2.9)

Equations (2.1)–(2.5) together with eqs. (2.8)–(2.9) provide the complete definition of the

type IIA Free Differential Algebra.

The next task is that of writing the Bianchi identities and construct their rheonomic

solution.

The Bianchi identities. The curvature definitions listed above lead immediately to the

following Bianchi identities which we write, already under the assumption that the torsion

is zero T a = 0:

0 = DRab (2.10)

0 = Rab ∧ Vb − i
(
ψL ∧ ΓaρL + ψR ∧ ΓaρR

)
(2.11)

0 = D ρL/R +
1

4
Rab ∧ Γab ψL/R (2.12)

0 = dG[2] + f [1] ∧ exp[−ϕ]ψR ∧ ψL + exp[−ϕ]
(
ψR ∧ ρL − ψL ∧ ρR

)
(2.13)

0 = df [1] (2.14)

0 = dH[3] + 2 i
(
ψL ∧ Γa ρL − ψR ∧ Γa ρR

)
∧ V a (2.15)

0 = dG[4] − H[3] ∧ G[2] + i
(
ψL ∧ Γa ψL − ψR ∧ Γa ψR

)
∧ V a ∧ G[2]

+H[3] ∧ exp [−ϕ] ψR ∧ ψL

−
1

2
f [1] ∧ exp [−ϕ]

(
ψL ∧ Γab ψR + ψR ∧ Γab ψL

)
∧ V a ∧ V b

− exp [−ϕ]
(
ψL ∧ Γab ρR + ψR ∧ Γab ρL

)
∧ V a ∧ V b (2.16)

0 = D2 χL/R +
1

4
Rab ∧ Γab χL/R . (2.17)

As it is the case for all supergravities and for all FDA.s the above Bianchi identities admit a

unique rheonomic solution up to field redefinitions. The rheonomic solution of the Bianchis

implies also the field equations of the theory given as a set of constraints to be satisfied by

the space-time curvature components. The choice of a frame is performed by imposing an

additional condition which fixes the field redefinitions. In particular we define the string

frame by requiring both the vanishing of the torsion

T a = 0 (2.18)

and the vanishing of all of the fermionic sectors of the 3-form curvature H[3]. This amounts

to setting:

H[3] = Habc V
a ∧ V b ∧ V c . (2.19)

One can indeed verify that the fulfillment of the above conditions requires a Weyl rescaling

of the fields which yield the usual prefactor e−2 ϕ in front of the NS-NS and the fermionic

sector of the action. The relevance of the frame-fixing choice (2.19) will be illustrated in

section 3 where we discuss the Green-Schwarz superstring action and κ-symmetry.

– 8 –
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2.2 Rheonomic parametrizations of the type IIA curvatures in the string frame

In order to present our result in the form most suitable to our later purposes, namely the

discussion of the BRST chiral algebra which leads to the construction of the pure spinor

superstring action, it is convenient to introduce a set of tensors, which involve both the

supercovariant field strengths Gab,Gabcd of the Ramond-Ramond p-forms and also bilinear

currents in the dilatino field χL/R. The needed tensors are those listed below:

Mab =

(
1

8
exp[ϕ]Gab +

9

64
χR Γab χL

)

Mabcd = −
1

16
exp[ϕ]Gabcd −

3i

256
χL Γabcd χR

N0 =
3

4
χL χR

Nab =
1

4
exp[ϕ]Gab +

9

32
χR Γab χL = 2Mab

Nabcd =
1

24
exp[ϕ]Gabcd +

1

128
χR Γabcd χL = −

2

3
Mabcd . (2.20)

The above tensors are conveniently assembled into the following spinor matrices

Z = NabΓ
ab + 3Nabcd Γabcd (2.21)

M± = i
(
∓Mab Γab + Mabcd Γabcd

)
(2.22)

N
(even)
± = ∓N0 1 + Nab Γab ∓ Nabcd Γabcd (2.23)

N
(odd)
± =±

i

3
faΓ

a±
1

64
χR/LΓabcχR/LΓabc−

i

12
HabcΓ

abc (2.24)

L
(odd)
a± = M∓ Γa ; L

(even)
a± = ∓

3

8
Habc Γbc . (2.25)

In terms of these objects the rheonomic parametrizations of the curvatures, solving

the Bianchi identities can be written as follows:

Bosonic curvatures.

T a = 0 (2.26)

Rab = Rab
mn V

m ∧ V n + ψR Θab
m|L ∧ V m + ψL Θab

m|R ∧ V m

+ i
3

4

(
ψL ∧ Γc ψL − ψR ∧ Γc ψR

)
Habc

+ψL ∧ Γ[a Z Γb] ψR (2.27)

H[3] = HabcV
a ∧ V b ∧ V c (2.28)

G[2] = GabV
a ∧ V b + i

3

2
exp [−ϕ] (χL Γa ψL + χR Γa ψR) ∧ V a (2.29)

f [1] = faV
a +

3

2
(χR ψL − χL ψR) (2.30)

G[4] = GabcdV
a ∧ V b ∧ V c ∧ V d

− i
1

2
exp[−ϕ] (χL Γabc ψL − χR Γabc ψR) ∧ V a ∧ V b ∧ V c . (2.31)

– 9 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
9

Fermionic curvatures.

ρL/R = ρ
L/R
ab V a ∧ V b + L

(even)
a± ψL/R ∧ V a + L

(odd)
a∓ ψR/L ∧ V a + ρ

(0,2)
L/R (2.32)

∇χL/R = Da χL/R V
a + N

(even)
± ψL/R + N

(odd)
∓ ψR/L . (2.33)

Note that the components of the generalized curvatures along the bosonic vielbeins do not

coincide with their spacetime components, but rather with their supercovariant extension.

Indeed expanding for example the four-form along the spacetime differentials one finds that

G̃µνρσ ≡ GabcdV
a
µ ∧ V b

ν ∧ V c
ρ ∧ V d

σ = ∂[µC
[4]
νρσ] +B

[2]
[µν ∂ρC

[1]
σ] −

−
1

2
e−ϕ

(
ψL[µ Γνρ ψRσ] + ψR[µ Γνρ ψLσ]

)

+ i
1

2
exp[−ϕ]

(
χL Γ[µνρ ψLσ] − χR Γ[µνρ ψRσ]

)

where G̃ is the supercovariant field strength. In the parametrization (2.27) of the Riemann

tensor we have used the following definition:

Θab|cL/R = −i
(
ΓaρbcR/L + ΓbρcaR/L − ΓcρabR/L

)
. (2.34)

Finally by ρ
(0,2)
L/R we have denoted the fermion-fermion part of the gravitino curvature whose

explicit expression can be written in two different forms, equivalent by Fierz rearrangement:

ρ
(0,2)
L/R = ±

21

32
Γa χR/L ψ̄L/R ∧ Γa ψL/R

∓
1

2560
Γa1a2a3a4a5

χR/L

(
ψL/R Γa1a2a3a4a5 ψL/R

)
(2.35)

or

ρ
(0,2)
L/R = ±

3

8
iψL/R ∧ χ̄R/L ψL/R ±

3

16
i Γab ψL/R ∧ χ̄R/L Γab ψL/R . (2.36)

2.3 Comments on the curvature structure in the string frame

The rheonomic parametrizations presented in the previous section have some distinctive

features which are deprived of any relevance in a supergravity context while they turn out

to be crucial for the successful construction of a BRST invariant pure spinor superstring

σ-model. Let us point these features out:

1. The rheonomic parametrization of the Neveu-Schwarz curvature H[3] is purely inner,

namely there are no dilatino terms on the right hand side. As we anticipated this

is the very definition of the string frame and it is important in order to write a

κ-symmetric Green-Schwarz superstring action.

2. The (1, 1) sector of the gravitino curvature ρ
(1,1)
L/R is divided in two parts, one of the

same chirality, which involves only Neveu-Schwarz field strengths and one of the

opposite chirality which involves Ramond-Ramond field strengths instead:

ρ
(1,1)
L/R

= ∓
3

8
Habc Γab ψL/R ∧ V c

︸ ︷︷ ︸
NS same chirality

+ M± Γa ψR/L ∧ V a

︸ ︷︷ ︸
RR opposite chirality

. (2.37)
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From a supergravity viewpoint we simply expect a linear combination of gamma

matrices with coefficients given by the bosonic field strengths and the specific form

of such a linear combination has no particular relevance. On the other hand, for the

construction of a pure spinor BRST invariant action, the particular structure of ρ
(1,1)
L/R

in the mixed chirality sector, which singles out a matrix M± with no vector indices,

is just essential. Indeed, as we are going to see, the matrix M+ is just what can be

used to introduce into the BRST Lagrangian a term of the form:

d+ M+ d− e
+ ∧ e−

the fields d± being the Lagrange multipliers of the BRST complex. Such a term

is the vertex operator of the Ramond-Ramond fields and it is an important part of

Berkovits’ construction. It would not be allowed if the Lorentz structures appearing in

ρ
(1,1)
L/R were different. It is remarkable that such a specific Lorentz structure, essential

for the pure spinor part of the superstring action, appears precisely in the string

frame, in which the Green-Schwarz part of the same superstring action is naturally

formulated. For instance in the Einstein frame the Lorentz structures appearing in

ρ
(1,1)
L/R are different.

3. The ρ
(0,2)
L/R part of the gravitino curvature is such that, also in the presence of general

backgrounds, with non trivial dilatino fields, the contribution to ρ
(0,2)
L is only from

bilinears in ψL and that to ρ
(0,2)
R is only from bilinears in ψR. This feature is appar-

ent in both the expressions of ρ
(0,2)
L/R given in (2.36) and will turn out to be crucial in

proving the BRST invariance of the Berkovits action since it implies that the anti-

commutator of the left-handed BRST operator with the right handed one vanishes

on the gravitino field. It is once again remarkable that this third essential feature of

the rheonomic parametrizations occurs in the same frame as the other two. Indeed

the mentioned structure of ρ
(0,2)
L/R is not true in the Einstein frame.

The above discussion has been anticipated in order to emphasize that the subsequent con-

struction of a Berkovits-like pure spinor superstring action is just founded on the existence

of a supergravity string frame where the rheonomic parametrizations display the three fea-

tures mentioned above. In solving the Bianchi identities it is by no means obvious a priori

that these features should simultaneously appear. Yet they do and this gives rise to the

Berkovits sigma model.

2.4 Field equations of type IIA supergravity in the string frame

As usual the rheonomic parametrizations of the supercurvatures imply, via Bianchi identi-

ties a certain number of constraints on the inner components of the same curvatures which

can be recognized as the field equations of type IIA supergravity. We derived the bosonic

part of these field equations in two steps: First we performed the Einstein frame dimen-

sional reduction on a circle of the field equations of D = 11 supergravity. Then we applied

the Weyl transformation which relates the Einstein frame to the string frame:

V a
(E) = V a

(S)e
−ϕ/4 . (2.38)
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Obviously we could have obtained the same result directly from the Bianchi identities in

the string frame, yet this would have been much more laborious.

The result is the following one. We have an Einstein equation of the following form:

Rab = T̂ab (f) + T̂ab (G2) + T̂ab (H) + T̂ab (G4) (2.39)

where the stress-energy tensor on the right hand side are defined as

T̂ab (f) = −Da Dbϕ +
8

9
Da ϕDb ϕ − ηab

(
1

6
�ϕ +

5

9
Dm ϕDm ϕ

)
(2.40)

T̂ab (G2) = exp [2ϕ] Gax Gby η
ab (2.41)

T̂ab (H) = − exp

[
1

3
ϕ

] (
9

8
Haxy Hbwt η

xw ηyt −
1

8
ηab Hxyz H

xyz

)
(2.42)

T̂ab (G4) = exp [2ϕ]

(
6Gax1x2x3

Gby1y2y3
ηx1y1ηx2y2ηx3y3 −

1

2
ηabGx1...x4

Gx1...x4

)
. (2.43)

Next we have the equations for the dilaton and the Ramond 1-form:

0 = �ϕ − 2 fa f
a +

3

2
exp [2ϕ] Gx1x2 Gx1x2

+
3

2
exp [2ϕ] Gx1x2x3x4 Gx1x2x3x4

+
3

4
exp

[
4

3
ϕ

]
Hx1x2x3 Hx1x2x3

(2.44)

0 = Dm Gma −
5

3
fm Gma + 3Gax1x2x3 Hx1x2x3

(2.45)

and the equations for the NS 2-form and for the RR 3-form:

0 = Dm Hmab −
2

3
fm Hmab

− exp

[
4

3
ϕ

] (
4 Gx1x2ab Gx1x2

−
1

24
ǫabx1...x8 Gx1x2x3x4

Gx5x6x7x8

)
(2.46)

0 = Dm Gma1a2a3 +
1

3
fm Gma1a2a3

+ exp

[
2

3
ϕ

] (
3

2
Gm[a1 Ha2a3]n ηmn +

1

48
ǫa1a2a3x1...x7Gx1x2x3x4

Hx5x6x7

)
.(2.47)

Any solution of these bosonic set of equations can be uniquely extended to a full super-

space solution involving 32 theta variables by means of the rheonomic conditions. The

implementation of such a fermionic integration is the supergauge completion.

In this way we have completed the discussion of type IIA supergravity in the string

frame. Let us now turn to superstrings.

3. The Green-Schwarz action and κ-symmetry

As we already mentioned in the introduction the Green-Schwarz κ-symmetric action of type

II superstrings has exactly the same form (in the string frame of background supergravity

fields) for the IIA and IIB case. It is just the form of the κ-symmetry transformation

against which it is invariant that is slightly different in the two cases. Actually also these
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transformations are essentially the same up to the obvious replacement of ψL/R gravitinos

with their chiral ψ1,2 analogues and similarly for the parameters.

The reason for this equality of the type IIA and type IIB actions is due to the following

peculiarity which characterizes both the NS and the GS superstring formalism: they intro-

duce into the action just one half of the (super)-forms describing (super)-space geometry.

All the well known difficulties connected with the description of RR emission vertices and

with the string quantization in non-trivial RR backgrounds are connected to this blindness

of the formalism which ignores half of the geometry. The new BRST formulation of su-

perstring actions based on pure-spinor superghosts is the only, so far discovered, way-out

of this contradiction. Indeed in the pure spinor approach the ghost-antighost sector ap-

pears to provide the missing fields which couple to the other face of the moon, namely the

fermionic forms ψL/R and the RR superforms. Hence the BRST invariant actions of type

IIA and type IIB theory will be different although similar just as the κ-symmetry trans-

formations are slightly different in the two cases. The BRST form of the action is just an

extension of the Green-Schwarz action which is identical in the two cases. This is the world

sheet counterpart of what happens for the bulk supergravity action. Also there restricting

the Lagrangian to the Neveu-Schwarz sector we obtain identical sub-Lagrangians while it

is the extension by means of the fermionic and Ramond Ramond fields that is different in

the two cases A and B.

In this section we construct the Green-Schwarz action of type II superstrings moving

in a generic supergravity background and we consider its invariance against κ-symmetry

in the case of type IIA superstrings.

3.1 The general form of the GS action

Employing, as it is required by the rheonomic construction of the Lagrangian, the first

order formalism [25], we write the Green-Schwarz action as the sum of two addenda, the

kinetic and the Wess-Zumino contributions:

AGS = Akin + AWZ (3.1)

where:

Akin =

∫ (
Πa

+ V
b ηab ∧ e+ − Πa

− V
b ηab ∧ e−

+
1

2
Πa

i Πb
j η

ij ηab e
+ ∧ e−

)
(3.2)

AWZ =
1

2
q

∫
B[2] . (3.3)

In the above two formulae, e± = e0 ± e1 denote the zweibein of the string world-sheet in

light-cone basis for the 2d Lorentz indices, namely ηij =

(
0 1

1 0

)
, while by Πa

± we have

denoted the usual 0-form auxiliary field whose equation identifies it with the projection of

the target vielbein V a onto the world volume zweibein e±. The coefficient q, denoting the

string charge, is fixed in such a way as to obtain a completely κ supersymmetric action
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in any background. As we already stressed there is no dilaton prefactor in the above

action since the FDA gauge forms (in particular the vielbein) and curvatures were already

transformed to the string frame.

First of all let us check the relative coefficients in the kinetic action (3.2) by calculating

its variation with respect to the auxiliary field Πa
±. We obtain:

0 =
δAkin

δΠa
±

=

∫ (
± ηab V

b ∧ e± + ηab Πb
± e

+ ∧ e−
)

⇓

V a = Πa
+ e

+ + Πa
− e

− (3.4)

which is the required result for the elimination of the auxiliary field Πa
− and the transition

to second order formalism.

Next let us introduce the following short hand notation:

Γ± ≡ Πa
± Γa (3.5)

and let us check the κ-symmetric invariance of the GS action in the A case.

3.2 κ-symmetry in the type IIA case

Relying on the rheonomic parametrizations of the FDA let us calculate the variation of the

Green-Schwarz action (3.1) under a target supersymmetry of parameters ǫL/R. We obtain:

δsusy Akin =

∫
i
[
(ǫL Γ+ ψL + ǫR Γ+ ψR) ∧ e+

− (ǫL Γ− ψL + ǫR Γ− ψR) ∧ e−
]

(3.6)

δsusy AWZ = − q

∫
i
[
(ǫL Γ+ ψL − ǫR Γ+ ψR) ∧ e+

+ (ǫL Γ− ψL − ǫR Γ− ψR) ∧ e−
]
. (3.7)

Let us now recall that the rules of the 1.5-order formalism which we use in all our p-

brane constructions impose that, after variation, we should implement the field equations

of all the auxiliary fields whose equation of motion is algebraic and allows for their own

elimination in terms of dynamical fields. In the string action these latter are the 0-form

fields Πa
i and the 2-dimensional zweibein ei. The field equation of the first is (3.4) while

the field equation of the zweibein is simply:

ηab Πa
i Πb

j = ηij (3.8)

namely the statement that the world-sheet metric is the pull-back of the target superspace

metric. Under these conditions one obtains:

L
(0)
kin = − e+ ∧ e− (3.9)

where:

L
(0)
kin ≡

(
Πa

+ V
b ηab ∧ e+ − Πa

− V
b ηab ∧ e− +

1

2
Πa

i Πb
j η

ij ηab e
+ ∧ e−

)
(3.10)
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is the 2-form which corresponds to the kinetic Lagrangian.

Assembling these results we find:

δsusy AGS =

∫
i [ (1 − q) ǫL Γ+ψL + (1 + q) ǫR Γ+ψR] ∧ e+

− i [(1 + q) ǫL Γ−ψL + (1 − q) ǫR Γ−ψR] ∧ e− . (3.11)

The above variation vanishes under the following conditions:

q = 1

ǫL = ǫL P
+

ǫR = ǫR P
− (3.12)

where:

P± =
1

2
(1 ± Γ+−) (3.13)

is the κ supersymmetry projector. Indeed we have P± Γ∓ = 0 and P± Γ+− = 1 which

are the necessary and sufficient conditions in order for half of the terms in eq. (3.11) to

cancel. The other half of them cancel thanks to the choice of the parameter q.

This concludes the derivation of the κ-symmetric action of a type IIA superstring

moving in the background of any supergravity solution, namely of any solution of the

type IIA field equations lifted to the whole (10, 32)-dimensional superspace by means of

rheonomy. The above formulae encode a complete algorithm to write down the explicit

Green-Schwarz bosonic-fermionic sigma model once the explicit form of the superforms

V a , B[2] , ϕ is given. However, since the most general background is characterized by

mutually interacting fermion, NS-NS and R-R fields, these latter have to be determined at

the same time as the NS-NS forms and the fermionic gravitino forms ψL/R.

3.3 Background independence

It should be stressed that both in the case of the Green-Schwarz actions or of their descen-

dant Pure Spinor actions the problem of constructing the sigma model is always split into

two conceptually well separated parts:

(a) Construction of the action in a generic supergravity FDA background;

(b) Super-gauge completion, namely explicit integration of the rheonomic conditions in

a given bosonic background in order to produce the explicit θ-dependence of the

superforms appropriate to that background.

The solution of point (a) is universal, can be done once for all and it is the goal of the

present paper. Point (b) is obviously case dependent and can be more or less technically

difficult depending on the structure of the chosen background. Yet it must be observed that

it is a guaranteed step since the fermionic equations to be integrated are of the first order

and integrable by very construction. The issue is just a matter of elegance and brevity

in writing the solution, which can always be reached, although in most cases its explicit
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expression may require a considerable calculational effort. We stress this fact because there

has been some confusion about this in the literature, particularly in connection with the

pure spinor formulation. The pure spinor σ-model has been constructed case by case on

given backgrounds as if the form of the action and the BRST transformations had to be

reinvented each time. This has probably somehow obscured the general structure and the

remarkable economy of principles underlying this new setup which solves some of the open

questions in superstring quantization.

4. The pure spinor action and BRST symmetry

As advocated at the end of the previous section the alternative to κ-symmetry is the BRST

quantization of the Green-Schwarz action by means of constrained BRST transformations

using pure spinors superghosts. The procedure consists of the following three steps:

(a) Derivation of the constrained BRST algebra in the non-negative ghost-number sector

from the FDA curvatures and their rheonomic parametrizations;

(b) Introduction of antighosts w± and Lagrange multipliers d± whose BRST transfor-

mation is defined up to a new gauge symmetry;

(c) Construction of a gauge fixing action Agf to be added to the classical Green-Schwarz

action AGS such that its variation under BRST cancels that of the classical action

thanks to the non vanishing BRST variation of the Lagrange multipliers amounting

to new gauge symmetries.

Let us begin with step (a).

4.1 The constrained BRST algebra from the FDA

Applying the general procedure we can obtain the explicit form of the constrained BRST

algebra suitable for either the type IIA or the type IIB theory by performing the ghost-form

extension of the Free Differential Algebra curvature definitions and parametrizations suc-

cessively setting to zero the bosonic ghosts. Actually, once the principle has been clarified

we can perform the two steps at once by considering the purely fermionic extension, namely:

ϕ 7→ ϕ

V a 7→ V a

B[2] 7→ B[2]

C[1] 7→ C[1]

C[3] 7→ C[3]

ψL/R 7→ ψL/R + λL/R . (4.1)

Each extended curvature definition R̂
[p]
def and each extended curvature parametrization

R̂
[p]
par decomposes into ghost sectors according to:

R̂
[p]
def = R

[p,0]
def + R

[p−1,1]
def + R

[p−2,2]
def

R̂[p]
par = R[p,0]

par + R[p−1,1]
par + R[p−2,2]

par (4.2)
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where we stop at ghost number g = 2 since neither in the curvature definitions nor in the

curvature parametrizations there appear higher than quadratic powers of the ψL/R forms.

Then we have to impose:

R
[p,0]
def = R[p,0]

par

R
[p−1,1]
def = R[p−1,1]

par

R
[p−2,2]
def = R[p−2,2]

par . (4.3)

The first of eqs. (4.3) is simply the rheonomic parametrization of the classical curvature we

started from. The second equation defines the constrained BRST transformation of all the

physical fields. The last of eqs. (4.3) defines the BRST transformation of the ghost fields

(the pure spinors) when the right hand side is non zero (R
[p−2,2]
par 6= 0) and the quadratic

pure spinor constraints R
[p−2,2]
def = 0 when the right hand side is zero R

[p−2,2]
par = 0. Let us

write the result of these straightforward manipulations.

4.2 The constrained BRST algebra of type IIA theories

It is also convenient to split the BRST operator into two chiral sectors. The BRST

operator is written as:

S = SL + SR (4.4)

where SL/R shifts in the direction of λL/R.

In this way from the (p − 1, 1) sector we obtain the BRST chiral transformations of

the physical fields:

SL/R B[2] = ∓ 2 iψL/R Γa λL/R V
a

SL/R C[1] = ∓ exp[−ϕ]ψR/L λL/R +
3

2
i exp[−ϕ]χL/R Γa λL/R V

a

SL/R C[3] = ψR/L Γab λL/R V
a ∧ V b −B[2] ∧ SL/RC

[1]

∓ i
1

2
exp[−ϕ]χL/R Γabc λL/R V

a ∧ V b ∧ V c

SL/R V
a = iψL/R Γa λL/R

SL/RψL/R = −D λL/R ∓
3

8
Γa1a2 λL/R V

a3 Ha1a2a3
±

21

16
ΓaχR/L (ψL/R ΓaλL/R)

∓
1

1280
Γa1...a5

χR/L (ψL/R Γa1...a5λL/R)

SR/LψL/R = M± ΓbλR/L V
b (4.5)

while from the sectors (p− 2, 2) we obtain the transformation of the superghosts:

SL/RλL/R = ±
21

16
ΓaχR/L (λL/R ΓaλL/R)

∓
1

1280
Γa1...a5

χR/L (λL/R Γa1...a5λL/R)

SR/LλL/R = 0 (4.6)
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and the following pure spinor constraints:

0 = λL Γa λL + λR Γa λR (4.7)

0 =
(
λL Γa λL − λR Γa λR

)
∧ V a (4.8)

0 = exp[−ϕ]
(
λR λL

)
(4.9)

0 = exp[−ϕ]λR Γab λL V
a ∧ V b . (4.10)

Before discussing the complete structure of the BRST transformations on the background

fields as a consequence of the extension of the rheonomic parameterizations, we need to

clarify how the constraints (4.7)–(4.10) have to be understood. It is clear that these

constraints are too strong for a 10d target-space vielbein V a and therefore we have to

project them on the 2d surface by embedding the worldsheet into the target-space. In

particular the vielbeins V a must be replaced by the embedding rectangular matrices Πa
±.

As will be shown in a separate paper [26], the set of constraints given above are equivalent

to the constraints given by [2]. This will be proven by showing that the solution of the

constraints (4.7)–(4.10) gives 22 independent complex degrees of freedom.1 2

Finally it is also necessary to write down the chiral BRST transformations of the

dilatino field:

SL/R χL/R = N
(even)
± λL/R

SR/L χL/R = N
(odd)
∓ λR/L . (4.11)

Let us give, for the sake of completeness, the formulas defining the action of the BRST

operator on the field strengths, some of which will be needed in the final section

SL/R Gab = e−ϕ

(
±λL/R ρ

R/L
ab −

3

2
i f[a χL/R Γb] λL/R +

3

2
iD[a χL/R Γb] λL/R

+
3

2
i χL/R Γ[a L

(even)
b]± λL/R +

3

2
i χR/L Γ[a L

(odd)
b]± λL/R

)

SL/R Gabcd = e−ϕ

(
λL/R Γ[abρ

R/L
cd] ±

i

2
f[a χL/R Γbcd] λL/R ∓

i

2
D[a χL/R Γbcd] λL/R

∓
i

2
χL/R Γ[abc L

(even)
d]± λL/R ±

i

2
χR/L Γ[abc L

(odd)
d]± λL/R

−
3

2
iH[abc χL/R Γd] λL/R

)

SL/R Habc = ∓2 i λL/R Γ[a ρ
L/R
bc]

SL/R DaχL/R = −
1

4
(λL/R Θcd,a|R/L) Γcd χL/R +

[
DaN

(even)
± − (N La)

(even)
±

]
λL/R

SL/R DaχR/L = −
1

4
(λL/R Θcd,a|R/L) Γcd χR/L +

[
DaN

(odd)
± − (N La)

(odd)
±

]
λL/R

1In [26] will be shown that one can obtain a solution of the constraints (4.7)–(4.10) with 22 degrees of

freedom, in a G2 and in a SO(8) covariant basis. Finally, it is proven that the constraints are equivalent to

Berkovits’ constraints. As a side result, it is shown that also the geometrically-deduced constraints for IIA

and IIB superstrings are consistent and equivalent.
2The pure spinor constraints for heterotic strings are derived from superembedding formalism in [29, 28].
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SL/R ρ
L/R
ab = Υ

(even)
ab± λL/R −

1

4
Rcd,ab Γab λL/R + 2PL/R[λL/R] ρ

L/R
ab

SL/R ρ
R/L
ab = Υ

(odd)
ab± λL/R (4.12)

where we have used the following definitions

(N La)
(odd)
± ≡ N

(even)
∓ L

(odd)
a± + N

(odd)
± L

(even)
a±

(N La)
(even)
± ≡ N

(even)
± L

(even)
a± + N

(odd)
∓ L

(odd)
a±

Υ
(even)
ab± = D[a L

(even)
b]± + L

(even)
[a± L

(even)
b]± + L

(odd)
[a∓ L

(odd)
b]±

Υ
(odd)
ab± = D[a L

(odd)
b]± + L

(odd)
[a± L

(even)
b]± + L

(even)
[a∓ L

(odd)
b]±

PL/R[λL/R] = ±
21

32
Γa χR/L λL/R Γa ∓

1

2560
Γabcde χR/L λL/R Γabcde .

We have concluded the derivation of the constrained BRST algebra for type IIA su-

perstrings. Let us now go to step (b).

4.3 The antighosts and the Lagrange multipliers

The structure of the antighosts and of the Lagrange multipliers is motivated by the sort of

gauging fixing one chooses to implement on the fermionic symmetries. Let us recall that

in flat superspace the gravitino 1-form is the exterior derivative of the θ coordinates:

ψL/R = dθL/R (flat superspace) (4.13)

and supersymmetry is nothing else but a translation in θL/R:

θL/R 7→ θL/R + ǫL/R . (4.14)

If we choose, as gauge fixing, the conditions:

ψR ∧ e+ = 0 ; ψL ∧ e− = 0 (4.15)

we obtain that the spinor field θR is holomorphic on the world sheet while the spinor field θL

is antiholomorphic on it. This is a very good starting point to obtain a two-dimensional con-

formal field theory from the pure spinor action we intend to construct. So, relying on this

intuition based on the case of flat superspace, eq. (4.15) is singled out as our choice. There

are no other compelling a-priori reasons to make such a choice but, once it is made, all the

other steps are essentially determined and lead to an algorithmic derivation of the action.

Indeed, in order to obtain eqs. (4.15) as variational equations associated with Lagrange

multiplier fields, we decide that these latter are a pair formed by a left handed SO(1, 9)

spinor d+ and a right handed SO(1, 9) spinor d− which will finally appear in the Lagrangian

through terms of the following form:

. . . + d+ ψR ∧ e+ + d− ψL ∧ e− + . . . (4.16)
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This choice determines also the representation assignments of the antighost fields w± which

are introduced as those chiral spinors of ghost number g = −1 that play the role of

predecessors of the d± fields through the following relations:

SR w+ = d+

SLw+ = 0

SR w− = 0

SLw− = d− . (4.17)

From eq. (4.17) one might conclude that the BRST operators on the fields d± necessarily

make zero, but, as already anticipated, this is not the case. Indeed we can set:

SR d+ = ξ+

SL d− = ξ−

SL/R d± = 0 (4.18)

where ξ± encode a new gauge transformation that will be determined later.

Let us clarify this point. In [2], the pure spinor constraints are very simple since they

do not interfere with the background, therefore it is straightforward to derive the gauge

transformations for the conjugate momenta (notice that in [2] the Hamiltonian formalism

has been used). In our case, the pure spinor constraints (4.7)–(4.10) involve the vielbein V a

and therefore one can wonder what is the interplay with the rest of the action to derive the

correct gauge transformations. However, one can use the 1.5 formalism [27] and consider

V a as a non-dynamical field, then one derives the gauge transformations and, at the end,

imposes the equations of motions by replacing V a with the pullbacks Πa
±. In [26], it is

shown that, by using an adapted basis for the pullbacks, the amount of gauge symmetry

is the correct one to give 22 degrees of freedom for the conjugate momenta w±.

4.4 The BRST invariant type IIA superstring action

In [6] we constructed a BRST invariant action for the M2 brane with pure spinors where

we used a certain gauge fixing term. This construction seems incomplete because it was

based on a solution of the pure spinor constraints which was not complete. There was an

idea that the gauge fixing term could be related to the cohomology class which defines the

FDA but also this idea appears now doubtful. Indeed the M2 brane action we constructed

has no term of the type:

dΓabcd · Fabcd d (4.19)

where d is the Lagrange multiplier field and Fabcd denotes the 4-index field strength. This

is a clear indication that the assumptions made were too restrictive since a term of the

form (4.19) is the vertex of Ramond Ramond fields and it is an essential part of the

Berkovits’ superstring Lagrangian. On the other hand this latter should be related to the

M2-brane action by double dimensional reduction, at least in the case of type IIA theory

and this cannot produce terms of the form (4.19) if they are missing in higher dimension.
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Hence it is mandatory to repeat the construction of the type IIA and also of the type IIB

pure spinor superstrings from scratch. Differently from what it was assumed by Berkovits

we have shown that the constraints are not the same in all cases and, in particular, they are

not the same for type IIB and type IIA superstrings. Moreover they feel the background

and are not given once for all. In a separate forthcoming publication [26] two of us will

discuss the solution of the new formulation of pure spinor constraints streaming from FDA

and rheonomy. Anticipating the result proved in [26], we state that, notwithstanding their

different structure the background dependent constraints derived from the FDA lead to the

same counting of degrees of freedom as in Berkovits’ approach both in the type IIA and

type IIB case, namely 22. In the case of type IIA, which is presently under consideration

the pure spinor constraints are given by eqs. (4.7), (4.8), (4.9), (4.10). In the presence

of these constraints and using the Lagrange multiplier and antighosts discussed in the

previous section we now construct an addendum AIIA
gf to the Green-Schwarz action such

that its BRST variation exactly cancels the BRST variation of the latter:

(SL + SR) AIIA
gf = − (SL + SR) AGS . (4.20)

In order to perform such a construction we begin by writing down the BRST variation of

the Green-Schwarz action. This is immediately obtained from eq. (3.11) by replacing the

supersymmetry parameter with the pure spinor superghost and setting the parameter q to

its value q = 1:

(SL + SR) AGS =

∫
2 i
[
λR Γ+ψR ∧ e+ − λL Γ−ψL ∧ e−

]
. (4.21)

Next we introduce the following ansatz for the gauge fixing action:

AIIA
gf = SR

(
w+ ψR ∧ e+

)
+ SL

(
w− ψL ∧ e−

)

+SR SL

(
w+ Ωw− e

+ ∧ e−
)

(4.22)

where Ω is a matrix in spinor space constructed by saturating gamma matrices only with

physical curvature components. The precise form of Ω will now be determined by imposing

eq. (4.20). The fact that it depends on physical fields only implies that the action of the

operators S2
L and S2

R on them are zero modulo Lorentz transformations and this allows the

following formal manipulations:

(SL + SR) AIIA
gf = S2

R

(
w+ ψR ∧ e+

)
+ S2

L

(
w− ψL ∧ e−

)

−SR SL

(
w+ ψR ∧ e+

)
− SL SR

(
w+ ψR ∧ e+

)

+SL S2
R

(
w+ Ωw− e

+ ∧ e−
)

−SR S2
L

(
w+ Ωw− e

+ ∧ e−
)
. (4.23)

Next taking into account that the only field on which S2
L/R is non zero is w∓, from eq. (4.23)

we obtain:

(SL + SR) AIIA
gf = ξ+ ψR ∧ e+ + ξ−ψL ∧ e−

+SR

[
w+ SL (ψR) ∧ e+ − w+ Ω ξ− e

+ ∧ e−
]

+SL

[
w− SR (ψL) ∧ e− + ξ+ Ωw− e

+ ∧ e−
]
. (4.24)
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Combining these results with the BRST variation of the Green-Schwarz action given in

eq. (4.21) conclude that we have BRST invariance of the complete action, namely:

(SL + SR)
(
AGS + AIIA

gf

)
= 0 (4.25)

if the following conditions are verified:

ξ+ ψR ∧ e+ = − 2 iλR Γ+ ψR ∧ e+ , (4.26)

ξ− ψL ∧ e− = 2 iλL Γ− ψL ∧ e− , (4.27)

and moreover if the arguments of SR/L in the last two lines of eq. (4.24) vanish separately.

Conditions (4.26), (4.27) allow to determine the gauge transformation of the anti-ghost

fields, namely ξ±. We indeed find:

ξ̄+ = −2i λ̄R Γ+ ; ξ̄− = 2i λ̄LΓ− , (4.28)

or, equivalently,

ξ+ = 2iΓ+ λR ; ξ− = −2iΓ− λL . (4.29)

We next require the vanishing of the arguments of SR/L in the last two lines of eq. (4.24).

This implies

0 = w+ SL (ψR) ∧ e+ − w+ Ω ξ− e
+ ∧ e− =

= w+ M− Γ− λL e
+ ∧ e− − 2 i w+ ΩΓ− λL e

+ ∧ e− , (4.30)

where we have used the last of equations (4.5) to express SL/R

(
ψR/L

)
. Equation (4.30) is

satisfied provided we make the following identification:

M− = 2 iΩ . (4.31)

The second condition reads:

0 = w− SR (ψL) ∧ e− + ξ+ Ωw− e
+ ∧ e− =

= w−M+ Γ+ λR e
+ ∧ e− − 2 i λ̄R Γ+ Ωw− e

+ ∧ e− . (4.32)

Now we may use the following property:

w−M+ Γ+λR = wT
−CM+Γ+λR = λT

RCΓ+C
−1MT

+Cw− = λ̄RΓ+M̃+w− , (4.33)

where C denotes the charge conjugation matrix, defined by the property C−1 Γa C = −ΓT
a ,

and M̃± = C−1 MT
±C. Equation (4.32) then implies

M̃+ = 2 iΩ , (4.34)

which is consistent with (4.31) since

M̃± = M∓ . (4.35)
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4.5 Explicit form of the pure spinor σ-model action

Here we explicitly compute the terms coming form new piece of the action denoted by AIIA
gf

by acting with the BRST operators SL and SR on the ”gauge-fixing” terms

AIIA
gf = SR

(
w+ ψR ∧ e+

)
+ SL

(
w− ψL ∧ e−

)

+SR SL

(
w+ Ωw− e

+ ∧ e−
)

= d+ ψR ∧ e+ + d− ψL ∧ e− +
i

2
d+ M− d−

−w+ (SRψR) ∧ e+ − w− (SLψL) ∧ e−

−
i

2
w+ (SRM−)d− +

i

2
d+ (SLM−)w− −

i

2
w+ (SRSLM−)w− (4.36)

where the action of S on ψL/R is given in (4.5), while the action of S on the spinor

matrices M± can be deduced by computing the corresponding BRTS variation of the

tensors in (2.20), which read as follows

SL/RM− = ±
i

8
λL/R ρ

R/L
ab Γab −

i

16
λL/R Γabρ

R/L
cd Γabcd −

3

16
λL/R Γ[a Db]χL/R Γab

±
1

32
λL/R Γ[abc Dd]χL/R Γab + χR A−

L |λR/L=0 + χL A−
R |λR/L=0 (4.37)

where we have defined A−
L/R in the following way

A−
L/R =

(
±

3

16
i λL/R e

ϕGab +
3

16
f[a Γb] λR/L −

3

16
Γ[aL

(even)
b]∓ λR/L −

3

16
Γ[aL

(odd)
b]± λL/R

±
9

64
iΓabN

(even)
± λL/R ±

9

64
iΓabN

(odd)
∓ λR/L

)
⊗ Γab

+

(
∓

3

32
i λL/R e

ϕGabcd −
3

32
H[abc Γd] λR/L ±

1

32
Γ[abcL

(even)
d]∓ λR/L

±
1

32
Γ[abcL

(odd)
d]± λL/R ∓

1

32
f[a Γbcd] λR/L −

3 i

256
ΓabcdN

(even)
± λL/R

−
3 i

256
ΓabcdN

(odd)
∓ λR/L

)
⊗ Γabcd . (4.38)

The complete expression of SR SL M−, which can be computed using the above formulas,

is rather involved. Therefore we shall give it below for χ = 0

[SR SL M−]χ=0 = −
i

8
λL

(
Υ

(even)
ab− −

1

4
Rcd,ab Γcd

)
λR Γab

+
i

16
λL Γab

(
Υ

(even)
cd− −

1

4
Ref,cd Γef

)
λR Γabcd

+
3

16
λL Γa

(
DbN

(odd)
− − (N Lb)

(odd)
−

)
λR Γab

−
1

32
λL Γabc

(
DdN

(odd)
− − (N Ld)

(odd)
−

)
λR Γabcd + λR

˜
N

(even)
− A−

L |λR=0

+λR
˜
N

(odd)
− A−

R |λR=0 (4.39)
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5. Conclusions

We provided a complete geometrical derivation of the pure spinor sigma model for type IIA

superstrings based on the FDA of the corresponding supergravity. The FDA formulation of

the latter had to be adapted to this problem by using directly the string frame rather than

the Einstein frame. This require a field redefinition. It turned out that the solution of the

Bianchi identities and the construction of the supergravity rheonomic parametrization was

much easier derived directly in the string frame than obtainined it from field redefinitions

and dimensional reduction starting from 11d. From this effort, we gained a very simple

rule for the BRST transformations to be used for the pure spinor formulation. The latter

is obtained in a Lagrangian formalism and the result has the advantage to relate the

superfields appearing in the FDA with those appearing in the BRST transformation and

in the sigma model. That is important to have in order a straight path for constructing

the sigma model given in any supergravity background.
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A. Summary tables

B. Derivation of type IIA supergravity in the string frame

The derivation of type IIA supergravity was done in two steps. In the first one, we started

from the D = 11 supergravity FDA and from its rheonomic parametrization and we reduce

them on a circle. Next, we perform a Weyl rescaling and gravitino field redefinition to go

to the string frame. In the second step, we derived the rheonomic parametrization directly

by solving the Bianchi identities in the D = 10 in the string frame. Here, we just sketch

such a derivation.

B.1 The D=11 FDA

We start from the FDA ofM -theory whose complete set of curvatures is given below [17, 18]:

Ta = DVa − i
1

2
Ψ ∧ Γa Ψ (B.1)

Rab = dΩab − Ωac ∧ Ωcb (B.2)

ρ̂ = DΨ ≡ dΨ −
1

4
Ωab ∧ Γab Ψ (B.3)

F[4] = dA[3] −
1

2
Ψ ∧ Γab Ψ ∧ Va ∧ Vb (B.4)

F[7] = dA[6] − 15 F[4] ∧ A[3] −
15

2
Va ∧Vb ∧ Ψ̄ ∧ Γab Ψ ∧ A[3]

−i
1

2
Ψ ∧ Γa1...a5

Ψ ∧ Va1 ∧ · · · ∧ Va5 (B.5)
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Mab =
(

1
8 exp[ϕ]Gab + 9

64 χR Γab χL

)

Mabcd = − 1
16 exp[ϕ]Gabcd −

3i
256 χL Γabcd χR

N0 = 3
4 χL χR

Nab = 1
4 exp[ϕ]Gab + 9

32 χR Γab χL = 2Mab

Nabcd = 1
24 exp[ϕ]Gabcd + 1

128 χR Γabcd χL = −2
3Mabcd

Z = NabΓ
ab + 3Nabcd Γabcd

M± = i
(
∓Mab Γab + Mabcd Γabcd

)

N
(even)
± = ∓N0 1 + Nab Γab ∓ Nabcd Γabcd

N
(odd)
± = ± i

3 fa Γa ± 1
64 χR/L Γabc χR/L Γabc − i

12 Habc Γabc

L
(odd)
a± = M∓ Γa ; L

(even)
a± = ∓3

8 Habc Γbc

(N La)
(odd)
± ≡ N

(even)
∓ L

(odd)
a± + N

(odd)
± L

(even)
a±

(N La)
(even)
± ≡ N

(even)
± L

(even)
a± + N

(odd)
∓ L

(odd)
a±

Υ
(even)
ab± = D[a L

(even)
b]± + L

(even)
[a± L

(even)
b]± + L

(odd)
[a∓ L

(odd)
b]±

Υ
(odd)
ab± = D[a L

(odd)
b]± + L

(odd)
[a± L

(even)
b]± + L

(even)
[a∓ L

(odd)
b]±

PL/R[λL/R] = ±21
32 Γa χR/L λL/R Γa ∓ 1

2560 Γabcde χR/L λL/R Γabcde

Table 3: Tensors and matrices: recalling that Gab and Gabcd denote the supercovariant field

strengths of the Ramond Ramond 1-form and 3-form respectively, Habc the supercovariant field

strength of the Neveu Schwarz two-form, while χL/R denote the chiral components of the dilatino

spinor field and ϕ, fa denote the dilaton and its supercovariant derivative, the table above sum-

marizes the precise definition of certain tensors and matrices appearing both in the sigma model

action and in the BRST transformation rules.

In the above equations Va and Ωab are respectively the 11D vielbein and spin connection,

Ψ is the 11D gravitino, namely a Majorana spinor valued 1-form of fermionic type with

32-components, while A[3] and A[6] are a bosonic 3-form and a bosonic 6-form respectively.

Equations (B.1), (B.2), (B.3) define the curvatures of the 11D superPoincaré algebra.

According to Sullivan’s second theorem the 3-form A[3] corresponds to the first FDA

extension of this latter generated by a degree 4 cohomology class, while the 6-form A[6]

corresponds to a further extension of the FDA generated by a degree 7 cohomology class

of the first extension.

The rheonomic parametrization of the M-theory curvatures is the following one:

Ta = 0 (B.6)

F[4] = Fa1...a4
Va1 ∧ · · · ∧ Va4 (B.7)

F[7] =
1

84
F a1...a4 Vb1 ∧ · · · ∧ Vb7 ǫa1...a4b1...b7

(B.8)

ρ̂ = ρa1a2
Va1 ∧ Va2 + i

1

3

(
Γa1a2a3Ψ ∧ Va4 −

1

8
Γa1...a4mΨ ∧ Vm

)
Fa1...a4

(B.9)
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SL/R B[2] = ∓ 2 iψL/R Γa λL/R V
a

SL/R C[1] = ∓ exp[−ϕ]ψR/L λL/R + 3
2 i exp[−ϕ]χL/R Γa λL/R V

a

SL/R C[3] = ψR/L Γab λL/R V
a ∧ V b −B[2] ∧ SL/RC

[1]

∓ i 1
2 exp[−ϕ]χL/R Γabc λL/R V

a ∧ V b ∧ V c

SL/R V
a = iψL/R Γa λL/R

SL/RψL/R = −D λL/R ∓ 3
8 Γa1a2 λL/R V

a3 Ha1a2a3
± 21

16 ΓaχR/L (ψL/R ΓaλL/R)

∓ 1
1280 Γa1...a5

χR/L (ψL/R Γa1...a5λL/R)

SR/LψL/R = M± ΓbλR/L V
b

SL/RλL/R = ±21
16 ΓaχR/L (λL/R ΓaλL/R)

∓ 1
1280 Γa1...a5

χR/L (λL/R Γa1...a5λL/R

SR/LλL/R = 0

SR w+ = d+

SLw+ = 0

SR w− = 0

SLw− = d−

SR d+ = 2iΓa Πa
+ λR

SL d− = −2iΓa Πa
− λL

SL/R d± = 0

Table 4: BRST algebra: in this table we summarize the BRST transformations of the fundamental

fields. In the first box are displayed the BRST transformations of the physical fields encoded in the

supergravity forms: the vielbein V a, the NS 2-form B[2], the Ramond Ramond forms C[1,3] and the

gravitino ψL/R. In the second box those of the (pure spinor) superghosts λL/R , while the third

box gives the transformations of the antighosts w± and of the Lagrange multipliers d± .

SL/R Gab = e−ϕ
(
±λL/R ρ

R/L
ab − 3

2 i f[a χL/R Γb] λL/R + 3
2 iD[a χL/R Γb] λL/R

+ 3
2 i χL/R Γ[a L

(even)
b]± λL/R + 3

2 i χR/L Γ[a L
(odd)
b]± λL/R

)

SL/R Gabcd = e−ϕ
(
λL/R Γ[abρ

R/L
cd] ± i

2 f[a χL/R Γbcd] λL/R ∓ i
2 D[a χL/R Γbcd] λL/R

∓ i
2 χL/R Γ[abc L

(even)
d]± λL/R ± i

2 χR/L Γ[abc L
(odd)
d]± λL/R − 3

2 iH[abc χL/R Γd] λL/R

)

SL/R Habc = ∓2 i λL/R Γ[a ρ
L/R
bc]

SL/R DaχL/R = − 1
4 (λL/R Θcd,a|R/L) Γcd χL/R +

[
DaN

(even)
± − (N La)

(even)
±

]
λL/R

SL/R DaχR/L = − 1
4 (λL/R Θcd,a|R/L) Γcd χR/L +

[
DaN

(odd)
± − (N La)

(odd)
±

]
λL/R

SL/R ρ
L/R
ab = Υ

(even)
ab± λL/R − 1

4 Rcd,ab Γab λL/R + 2PL/R[λL/R] ρ
L/R
ab

SL/R ρ
R/L
ab = Υ

(odd)
ab± λL/R

Table 5: BRST algebra: in this table we display the BRST transformations of the various field

strenghts.

Rab = Rab
cd

Vc ∧ Vd + i ρmn

(
1

2
Γabmnc −

2

9
Γmn[a δb]c + 2Γab[m δn]c

)
Ψ ∧ Vc

+Ψ ∧ Γmn ΨFmnab +
1

24
Ψ ∧ Γabc1...c4 ΨFc1...c4 (B.10)
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A = AGS + AIIA
gf

AGS =

∫ (
Πa

+ V
b ηab ∧ e+ − Πa

− V
b ηab ∧ e− + 1

2Πa
i Πb

j η
ij ηab e

+ ∧ e− + 1
2 B[2]

)

AIIA
gf =

∫ (
d+ ψR ∧ e+ + d− ψL ∧ e− + i

2d+ M− d−

−w+ (SRψR) ∧ e+ − w− (SLψL) ∧ e−

− i
2 w+ (SRM−)d− + i

2 d+ (SLM−)w− − i
2 w+

(
SRSLM−

)
w−

)
.

Table 6: Pure spinor action: in this table we display the complete form of the pure spinor action

for tyep IIA superstring in a general background. In the formulas below SLM− and mathcalSRM−

are given in (4.37) and SRSLM− is given in (4.39) for χ = 0

and it implies the following field equations on the space-time components:

0 = DmF
mc1c2c3 +

1

96
ǫc1c2c3a1a8 Fa1...a4

Fa5...a8

0 = Γabc ρbc

Ram
cm

= 6F ac1c2c3 F bc1c2c3 −
1

2
δa
b
F c1...c4 F c1...c4 (B.11)

In all the above equations the overlined latin indices run on eleven values:

a1, a2, . . . = 0, 1, 2, . . . , 10 (B.12)

B.2 The type IIA FDA from circle reduction

The D = 10 Free Differential algebra defined in eqs. (2.1)–(2.9) and its rheonomic

parametrization in eqs. (2.26)–(2.33) can now be obtained by dimensional reduction on

a circle S1 of the algebraic structure described in the previous subsection.

Explicitly, the Kaluza-Klein ansatz realting the D = 11 with the D = 10 items is the

following:

Va = exp

[
−

1

3
ϕ

]
V a

V11 = exp

[
2

3
ϕ

] (
dθ + A[1]

)

A[3] = C[3] + B[2] ∧
(
dθ + A[1]

)

Ψ = exp

[
−

1

6
ϕ

]
(ψL + ψR) + (χL + χR) exp

[
5

6
ϕ

] (
dθ + A[1]

)

−
i

2
exp

[
−

1

6
ϕ

]
Γr (χL − χR) V r , (B.13)

where θ is the coordinate on the circle.

Inserting this ansatz in the D = 11 curvatures and redefining the D = 10 spin connec-

tion in such a way that the D = 10 torsion is zero, we obtain eqs. (2.1)–(2.9) and (2.26)–

(2.33). Furthermore, from the above KK ansatz inserted in the field equations (B.11), we

get the bosonic field equations of type IIA supergravity in section 2.4.

– 27 –
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C. Conventions

In this appendix we collect all the relevant conventions for the Gamma matrix algebra

utilized in the main text

{Γa , Γb} = 2 ηab; a, b=0, . . . , 9 (C.1)

ηab = diag{+,−,−,−,−,−,−,−,−,−} (C.2)

Γ†
0 = Γ0 , Γ†

11 = Γ11 , Γ11ψL/R = ±ψL/R . (C.3)

We define the charge conjiugation matrix CΓaC
−1 = −ΓT

a . Due to these definitions

CΓa, CΓ11CΓab,CΓ11bcde, CΓabcde are symmetric and C,CΓ11ab, CΓabc,Γ11abc, CΓabcd are

antisymmetric.
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